Металлургия черных металлов (Учебник для техникумов)

Линчевский Б.В
Металлургия, 1986 г.

Ссылка доступна только зарегистрированным пользователям.

§ 2. Обработка жидкой стали в вакууме

Методы вакуумной обработки позволяют единовременно обрабатывать под вакуумом сотни тонн стали. Производительность таких установок намного выше любого из способов печной вакуумной металлургии. Рассмотрим основные способы обработки жидкой стали в вакууме.
Вакуумирование стали в ковше
Принципиальная схема способа представлена на рис. 92. После выпуска стали из сталеплавильной печи ковш с металлом устанавливают в вакуумную камеру. Камера представляет собой металлический цилиндр, расположенный в бетонированной яме в полу цеха. Диаметр камеры несколько больше диаметра ковша. Стенки и дно камеры выложены огнеупорным кирпичом. Сверху камера герметично закрывается крышкой. Между корпусом камеры и крышкой имеется вакуумное уплотнение в виде ленты или трубки из вакуумной резины. В корпусе камеры имеется отверстие для вакуумпровода, по которому производится откачка воздуха и газов, выделяющихся из металла при обработке в вакууме. Для создания разрежения применяются пароэжекторные насосы высокой производительности (до 10000 М3/мин). На крышке камеры установлены устройства для наблюдения за процессом обработки, дозаторы для присадки добавок. После установки в камеру ковша с жидким металлом ее закрывают крышкой и откачивают из камеры воз-Дух до давления 6,5—15,0 Па. При понижении давления из металла выделяются растворенные в нем азот и водород, и, если металл не раскислен, начинает бурно протекать реакция взаимодействия растворенных углерода и кислорода. Сталь, предназначенная для вакуумирования в ковше, не рекомендуется предварительно раскислять кремнием или алюминием. Продолжительность обработки составляет 10—15 мин. За это время происходит раскисление стали, частичная ее дегазация, удаление неметаллических включений. Благодаря перемешиванию металла усредняется химический состав стали и выравнивается температура. Этот метод используется для получения пластичной стали, применяемой для автомобильного листа и для некоторых марок конструкционной и электротехнической стали.
Однако применение вакуумирования стали в ковше мало пригодно для повышения степени чистоты спокойной, раскисленной стали, так как большая глубина металла в ковше не позволяет полностью использовать реакции раскисления стали углеродом и дегазацию металла в глубинных слоях.
Обработка струи стали
Метод обработки металла в струе при отливке крупных слитков или при переливе из ковша в ковш, стоящий в вакуумной камере, позволяет более эффективно обрабатывать сталь. На рис. 93 представлена схема установки для отливки крупных слитков в вакууме. На крышке вакуумной камеры устанавливают промежуточ ный ковш, вакуум-плотно присоединенный к крышке. Емкость этого ковша составляет 5—10 т. отверстие между промежуточным ковшом и камерой до начала вакуумной разливки закрывают листом алюминия. Внутрь камеры устанавливают изложницу или пустой ковш. Перед началом разливки в камере создают разрежение. В промежуточный ковш наливают сталь из разливочного ковша и открывают стопор промежуточного ковша. Струя стали прожигает лист алюминия и попадает в вакуумную камеру. В вакууме газы, выделяются из металла, активно идет реакция [С] + + [О]=СО. Выделяющиеся газы разрывают струю стали на мелкие капли, что значительно увеличивает поверхность раздела жидкого металла с газом, а следовательно, повышает эффективность вакуумной обработки. Выделение газов продолжается из стали, налитой в изложницу. После заполнения изложницы в камеру напускают воздух, открывают крышку и после полного затвердевания слитка вынимают изложницу со слитком из камеры. Преимущество этого метода заключается в том, что слиток отливается в вакууме, в то время как в других способах после вакуумной обработки сталь разливают по изложницам на воздухе.
Метод отливки крупных слитков в вакууме широко применяется для производства ответственных поковок, предназначенных для изготовления коленчатых и гребных валов судов, роторов крупных турбин электростанций, генераторов, прокатных валков, деталей атомного энергомашиностроения. Большое значение для таких ответственных и дорогостоящих поковок и изделий имеет отсутствие скоплений неметаллических включений, флокенов, пористости, приводящих к преждевременному их разрушению. Поскольку водород вызывает появление флокенов, водородной хрупкости и пористости, то обычно крупные поковки подвергают обезводороживающему отжигу в течение сотен часов, однако полностью опасность появления дефектов, связанных с водородом, не устраняется. Только вакуумная Обработка гарантирует устранение этих дефектов.
Метод порционной вакуумной обработки DH
Эффективным способом дегазации стали является метод DH. Процесс заключается в следующем. Вакуумная камера грушевидной формы и небольшого объема  помещается над ковшом с металлом (рис. 94). Снизу камеры имеется патрубок, стенки которого снаружи и внутри защищены огнеупорным материалом. К верхней части камеры подходит вакуумпровод, связывающий камеру с вакуумными насосами. На крышке имеются устройства для введения внутрь камеры легирующих и раскислителей. Перед началом вакуумной обработки отверстие патрубка закрывают листом алюминия. В камере создают разрежение. Патрубок погружают в металл. Под действием атмосферного давления сталь затекает внутрь камеры и порция стали, составляющая по массе примерно одну десятую от массы стали в ковше, подвергается вакуумной обработке. Затем камеру поднимают, но так, чтобы конец патрубка не выходил из жидкого металла. При этом часть стали из камеры выливается в ковш. При следующем опускании камеры вниз в нее попадает новая порция металла. Во время вакуумной обработки присаживают порции ферросплавов и легирующих. металл хорошо перемешивается. Для обеспечения полной дегазации и перемешивания легирующих добавок необходимо 30—60 циклов вакуумной обработки. Таким способом обрабатываются ковши со сталью массой до 400 т.
Циркуляционная вакуумная Обработка RH
Высокой эффективностью обладает способ циркуляционной вакуумной обработки. Схема установки показана на рис. 95. Жидкая сталь из разливочного ковша по всасывающей трубе поднимается в вакуумную камеру, подвергается воздействию низкого давления и по второй трубе стекает в ковш. Камера представляет собой цилиндрический сосуд, в нижней части которого имеются две трубы, футерованные огнеупорными изделиями. При помощи вакуумпровода она подсоединена к откачной системе. Перед началом вакуумной обработки создают вакуум, для чего концы труб закрывают листами алюминия, которые атмосферным давлением плотно прижимаются к трубам. Затем камера на кронштейне поворачивается и располагается над уровнем металла в ковше. После опускания трубы погружаются в металл, и под действием атмосферного давления сталь поднимается по обеим трубам в камеру. В одну из труб на некотором расстоянии от уровня шлака подают по трубе аргон.
Пузыри аргона поднимаются в жидкой стали в сторону вакуумной камеры, где поток пузырей аргона создает необходимое добавочное усилие, которое вызывает движение стали по этой трубе. Таким образом возникает непрерывная циркуляция стали. По одной трубе металл входит в камеру, по другой он сливается в ковш. За время пребывания в установке сталь подвергается действию вакуума и дегазируется. По ходу вакуумной обработки присаживают раскислители и легирующие, которые хорошо перемешиваются в объеме жидкого металла. Количество аргона, используемого для транспортировки стали невелико и составляет 5—10 % от общего количества газа, выделяющегося из стали в результате вакуумирования. Скорость подъема стали в трубе достигает 5 м/с, поэтому втекающая в камеру струя металла фонтанирует на высоту до 1 м, что способствует эффективной обработке стали. Продолжительность дегазации зависит от массы металла в ковше. Для обработки 100-т ковша требуется 20—30 мин. Во время вакуумной обработки температура металла снижается на 30—40 °С. Для компенсации потери тепла камеру перед обработкой прогревают и перегревают сталь перед выпуском из печи.
Вакуумная установка ковш — печь (метод. ASEA—SKF)
Вакуумирование проводят в ковше из немагнитной стали, установленном в индукторе. Верхняя часть ковша имеет фланец для герметичного соединения с вакуумной крышкой рис. 96. Крышка патрубком соединяется с вакуумной системой. На одном стенде этой установки расположен свод с тремя электродами, имеется соответствующее электрическое оборудование дуговой печи. сталь выплавляют в дуговой печи без восстановительного периода. Из легирующих вводят только молибден и никель, контролируют содержание углерода. Шлак перед выпуском удаляют. сталь выпускают в ковш, который устанавливают в индуктор, закрывают крышкой и вакуумируют. За время вакуумной обработки сталь остывает на 80 °С. В конце дегазации присаживают легирующие. вакуумную крышку отводят в сторону и ковш накрывают сводом с электродами. Включают ток и нагревают металл дугами в течение часа. В этот же период, если необходимо, обрабатывают металл порошками, корректируют химический состав. По достижении нужной температуры и состава снимают свод. ковш вынимают из индуктора и отправляют на разливку. Этот метод повышает степень чистоты стали и увеличивает   производительность  дуговых
печей.
§ 3. Специальные методы электрометаллургии
Плазменная плавка
В последние годы появилась плавка металла при помощи электрической плазмы, т. е. ионизированного газа. Рассмотрим   один   из вариантов плазматрона (рис. 97). Он состоит из внутреннего стержня — электрода — и наружного электрода, расположенного соосно с внутренним, имеющим форму сопла. При постоянном токе внутренний электрод служит катодом, а сопло — анодом. поток газа, подаваемый в камеру плазматрона, выдувает дугу, горящую между катодом и анодом в сопловое отверстие наружу. Плазменная дуга направляется на нагреваемый объект. Электрический разряд между катодом и анодом ионизирует газ, образуется низкотемпературная плазма с температурой до 30000 К. Газ нагревается внутри канала сопла и с большой скоростью вырывается из сопла в виде факела. Стенки сопла изолированы от плазмы тонким слоем холодного неионизированного газа, который служит также электрическим изолятором.