Аморфные металлы (Перевод с японского)
Раздел ГРНТИ: Производство черных металлов и сплавов
Судзуки К., Худзимори Х.
Металлургия, 1987 г.
Ссылка доступна только зарегистрированным пользователям. |
В этом разделе с позиций практического использования описываются аморфные сплавы конкретного химического состава, режимы их термической обработки, уровень получаемых магнитных характеристик и т. д. О магнитных свойствах аморфных сплавов на основе железа, . кобальта и никеля в настоящее время известно следующее:
9.1.2. сплавы со сложными химическими составами Ограничиваясь только аморфными сплавами, получаемыми закалкой из жидкого состояния, можно сказать, что их фазовый состав никак не связан с диаграммой состояния. В отличие от кристаллических сплавов, в которых введение новых компонентов может сопровождаться значительными структурными изменениями, аморфные сплавы всегда представляют собой однофазный твердый раствор, что является их особым достоинством. Чистые аморфные металлы, в отличие от аморфных сплавов, содержащих большое число компонентов, при обычных температурах нестабильны, поэтому в дальнейшем мы будем говорить главным образом об аморфных сплавах. Компоненты аморфного твердого раствора могут качественно по-разному влиять на химические свойства сплава в целом. В частности, весьма важным обстоятельством является наличие металлоидов, в больших количествах содержащихся во многих аморфных сплавах. Можно уверенно говорить о том, что химические свойства аморфных сплавов определяются в .первую очередь их химическим составом. 9.2. КОРРОЗИЯ АМОРФНЫХ СПЛАВОВ 9.2.1. Аморфные сплавы на основе железа Скорость коррозии Аморфные сплавы железо — металлоид, получаемые сверхбыстрым охлаждением и не содержащие других металлических элементов, кроме железа, обычно характеризуются довольно высокой скоростью коррозии по сравнению с чистым кристаллическим железом или сталью, что вызвано химической неустойчивостью их аморфного состояния. Однако замена в таких сплавах некоторой части железа хромом приводит к тому, что их коррозионная стойкость становится необычайно высокой, превышающей коррозионную стойкость нержавеющих сталей, высоконикелевых сплавов и других подобных материалов. Классические поляризационные кривые приведены на рис. У.5. Сначала кислород из воздуха переходит в водный раствор, после чего потенциал металла повышается1 от потенциала катода (—) до потенциала анода ( + ). При этом течет «отрицательный» электрический ток, складывающийся из малого тока восстановления ионов кислорода и большого тока восстановления ионов водорода. Этот суммарный ток всегда отрицательный. Его протекание повышает электрический потенциал. По абсолютной величине этот ток невелик. Анодный ток, соответствующий анодному растворению, по абсолютной величине равен катодному току, а потенциал, отвечающий такому состоянию, является потенциалом коррозии. Так как во внешней цепи поддерживается равновесие, растворение металла начинается уже при электрическом потенциале, отвечающем точке2 3. Анодный электрический ток (ток коррозии) пропорционален скорости коррозионного растворения. Он «возрастает с увеличением потенциала. Диапазон потенциалов, соответствующий активному растворению металла, называется областью активного состояния. Когда окислительная сила раствора возрастает, окисленные ионы металла образуют оксиды, гидрооксиды и оксиды-гидрооксиды, покрывающие тонким слоем поверхность металла. При этом Скорость коррозии может уменьшаться в несколько раз. Такое состояние металла называется пассивным состоянием, или пассивацией. Так как пассивное состояние возникает при большей окислительной силе, чем активное состояние, в пассивирующей пленке ионы металла обычно имеют большую степень окисленности, чем в активной области. Кроме того, если в растворе присутствуют, например, хлорид-ионы, разрушающие пассивирующую пленку, то в области потенциалов пассивации во многих металлах появляется описанная выше питтинговая КОРРОЗИЯ (выше потенциала, отвечающего точке 3). При значениях потенциала, превышающих потенциал в точке 4, вследствие сильного окисления ионы металла, формирующие пассивирующую пленку, еще больше окисляются и, если химические продукты такого окисления могут переходить в раствор, электрический ток растворения снова возрастает. Это состояние называется перепассивацией. При еще более высоких потенциалах происходит электролиз воды и выделяется газообразный кислород. Как следует из рис. 9.5,6, если максимальный ток в активном состоянии ip меньше катодного тока ic при данном потенциале, то потенциал снижается и положительный и отрицательный токи уравновешивают друг друга. В этом случае потенциал коррозии существенно повышается, что соответствует пассивации металла или сплава. Таким образом, простым выдерживанием сплава в растворе можно перевести его в пассивное состояние. Этот процесс называют самопроизвольной пассивацией, или самопассивацией. Условия, обеспечивающие высокую коррозионную стойкость данного металла, сводятся к следующим. Во-первых, потенциал коррозии, соответствующий началу активного растворения /, должен быть высоким (если потенциал коррозии высокий, то Скорость коррозии низка; желательно, в частности, чтобы потенциал коррозии находился в области потенциалов пассивации, так как в этом случае возможна самопассивация). Во-вторых, потенциал 2, отвечающий образованию пассивирующей пленки, должен быть достаточно иизким (в этом случае пассивирующая пленка возникает при слабой окислительной способности раствора). В-третьих, необходим высокий потенциал начала питтинговой коррозии 3 и высокий потенциал перепассивации 4. Что касается электрического тока, то нужно, чтобы максимальный ток активного растворения а был мал (это отвечает малой скорости активного растворения, а это, в свою очередь, соответствует тому, что при увеличении окислительной способности раствора должна происходить самопассивация). Электрический ток пассивации также должен быть мал (это условие означает, что образующаяся пассивирующая пленка обладает хорошими защитными свойствами). Таким образом, кривые поляризации содержат всю информацию, необходимую для оценки коррозионной стойкости металлических материалов. Поляризационные кривые аморфных сплавов на основе железа На рис. 9.6 показан пример поляризационных кривых, полученных путем измерения электрического тока при различных потенциалах после выдержки аморфного сплава Fe — 10 Сг — 13 Р — 7 С в течение 1 ч в 1 н. водном растворе NaCl и в 2 н. водном растворе H2S04 [31. При отрицательных значениях потенциала фиксируется катодный ток, а при положительных — анодный.