Опыт модифицирования трубной стали в процессе сифонной разливки (статья)

На коррозионную стойкость стали большое влияние оказывают количество, состав и распределение в ней неметаллических включений. При выплавке трубной стали для раскисления металла обычно используется наиболее эффективный реагент — алюминий. Но продукты раскисления металла алюминием представляют собой остроугольные образования корунда, располагающиеся в прокатанном металле в виде строчек вдоль направления прокатки. Эти неметаллические включения, а также низкоплавкие сульфиды марганца являются источниками, провоцирующими образование микротрещин и способствующими развитию процессов коррозионного разрушения металла. Присадка в жидкий металл кальция приводит к изменению условий образования неметаллических включений, к их глобуляризации. Ниже приведены данные по разработке метода присадки кальцийсодержащих лигатур в жидкую сталь в ходе еБ разливки, а также результаты коррозионных испытаний модифицированного металла. Эксплуатация трубопроводов идБт, как правило, в коррозионноактивных и высокоминерализованных средах, содержащих углекислый газ и сероводород как природного, так и бактериального происхождения. Проявление этих факторов ведет к насыщению металла водородом, его охрупчиванию и разрушению. Поэтому повышение коррозионных свойств материала для изготовления труб имеет актуальное значение. Шагом к повышению механических и коррозионных свойств металла в свое время стало введение в трубную сталь титана, ванадия или ниобия. Но применение этих элементов ограничивается тем, что при увеличении содержания упрочняющего элемента может снижаться пластичность и вязкость, сталь становится хрупкой. Модификаторы, концентрируясь у границ зерен в виде тонких пленок, ослабляют межзеренную связь. Для снижения этого эффекта В.И.Архаров [1] предложил использовать явление конкуренции адсорбционно-активных примесей на границе зерен при затвердевании металла и вводить в жидкий металл кальций. При дополнительном микролегировании кальцием удавалось подавить межкристаллитную адсорбцию, в частности ванадия, и оттеснить ванадий в толщу зерна, тем самым более полно использовать его упрочняющее действие. Введение кальция в металл, а также решение другой задачи — рафинирование металла от вредной примеси - серы стало возможным с разработкой сталеплавильщиками методов внепечной обработки жидкого металла. Сера при затвердевании металла образует низкоплавкие эвтектики сульфидов марганца, которые располагаются на границах зерен, снижая механические характеристики металла. В ходе деформации металла эти выделения вытягиваются в направлении, совпадающем с направлением прокатки, и являются одной из основополагающих причин, снижающих качество металла. Разрушение стали с вытянутыми сульфидами связано с возникновением вокруг сульфидов напряжений, а затем и микротрещин. Известно, что при массовом содержании водорода в металле 3 ppm его равновесное давление в металле при температуре 3000С достигает 30 МПа (300 атм). Под воздействием высокого давления, развивающегося внутри микротрещин, происходит увеличение длины и ширины микротрещин, и они сливаются в единую трещину, что приводит, в конце концов, к разрыву трубы. Введение в металл кальция позволяет изменить морфологию образующихся неметаллических включений, глобуляризировать их и снизить вероятность образования трещин на трубопроводах. Роль глобуляризации неметаллических включений растет с открытием того факта, что даже после проведения весьма глубокой десульфурации (до содержания серы в металле 0,002-0003 %) не наблюдается эффекта сопротивления металла коррозионным явлениям. Из-за снижения количества сульфидов в металле концентрация водорода, аккумулируемая каждым включением, возрастает и вероятность распространения микротрещин увеличивается. Таким образом, получение в металле супернизких содержаний серы не служит гарантией повышения коррозионной стойкости готовой продукции. Только изменение морфологии сульфидных, а также и оксидных включений, также распространяющихся в металле в виде строчек, позволяет получить надежные результаты по повышению коррозионной стойкости металлопродукции. Модифицирование щелочноземельным элементом - кальцием позволяет, во-первых, изменить форму неметаллических включений, переводя ее из "опасной" в более благоприятную, глобулярную, исключающую образование микротрещин в металле, во-вторых, очистить границы зерен от карбонитридов и тем самым повысить механические характеристики металла. По сравнению с другими элементами кальций лидирует по прочности соединений как с кислородом, так и с серой. Но кальций имеет ограниченную растворимость в жидком железе (0,056%), высокую упругость паров при температурах сталеплавильных процессов (при 16000С — 0,33 МПа), низкую температуру плавления (8390С) и кипения (14400С). Все эти показатели делают его "неудобным", нетехнологичным элементом для введения его в расплавленный металл. Роль кальция при введении его в металл сводится не только к работе с включениями. При достаточном количестве его в расплаве обнаруживается влияние этого элемента на свойства стали через посредство явлений, связанных с межкристаллитной внутренней адсорбцией. Кальций, как поверхностно-активная примесь, стремится выйти из объемов на образующуюся поверхность. Этот элемент обогащает границы зерен, препятствуя образованию в межкристаллитных сочленениях неметаллических включений, охрупчивающих металл. Многофункциональность действия кальция на качество металла заставляет металлургов искать способы для наиболее эффективного введения его в расплав. Включение во внепечную обработку операции модифицирования металла простейшей композицией в виде силикокальция позволяет существенно снизить загрязненность металла неметаллическими включениями, повысить уровень механических характеристик. Присадка легкоокисляющихся сплавов, какими, как правило, являются модификаторы, наиболее удачна, если она осуществляется путем подачи проволоки, начиненной реагентом, а не дачей кусков силикокальция непосредственно в ковш в ходе выпуска металла из печи [2]. Но модифицирование металла путем подачи проволоки в ковш связано с разного рода недостатками. Во-первых, велики потери легкоокисляющихся элементов (кальция, алюминия, титана и др.) из-за окисления их ковшевым шлаком, атмосферным воздухом, футеровкой ковша; во-вторых, для организации работы по этому методу необходимы значительные затраты; в третьих, возникают и технологические трудности, связанные в присадкой кальцийсодержащих реагентов в сталеразливочный ковш (например, зарастание стаканов отложениями глинозема и сульфида кальция) [3]. Кроме того, для получения максимального эффекта повышения механических и эксплуатационных свойств необходимо получать в металле высокие соотношения содержаний кальция к сере ([Ca]/[S] = 0,65–1,3 ) и редкоземельных металлов к сере ( [РЗМ]/[S]= 3 ) [4,5]. Достижение таких показателей возможно при концентрации серы в расплаве менее 0,008% и достаточно высоком расходе модификатора (2-3 кг на тонну обрабатываемого металла). Жидкая сталь после выпуска из плавильного агрегата и последующей обработки в ковше может быть однородной по химическому составу и отличаться высокой чистотой по неметаллическим включениям. Однако, в последующем ситуация может существенно измениться. В процессе разливки металла происходит его вторичное окисление, вследствие чего эффект от рафинировочных операций, проведенных в ковше, в значительной степени нивелируется. Кроме того, в процессе кристаллизации металлического расплава происходит снижение растворимости в железе кислорода (10-ти кратное) и серы (20-ти кратное) [6]. Поэтому при затвердевании металла вследствие ликвационных процессов происходит неравномерное распределение в слитке углерода, серы и фосфора. Следствием больших разбегов по химическому составу металла могут быть и значительные различия в величинах механических и эксплуатационных характеристик проб, отобранных от разных частей слитка. Снижения химической неоднородности металла можно добиться при прямом вмешательстве в кинетику затвердевания слитка [7]. Поэтому важно, чтобы в металле, заполнившем изложницу, было достаточное количество элементов-модификаторов (кальция не менее 20-30 ppm) для решения следующих задач: 1) получение в твердом металле наиболее благоприятных (по морфологии и распределению в объеме слитка) с точки зрения улучшения механических и эксплуатационных свойств неметаллических фаз; 2) подавление процессов перераспределения в объеме металла ликватов; 3) перевод карбонитридов с границ зерен в их глубь. Все эти доводы склонили нас к выводу о необходимости перенесения операции модифицирования металла из ковша на разливку, как можно ближе к моменту начала затвердевания жидкого расплава. При этом значительно снижаются потери легкоокисляющихся элементов. Введение модификаторов в ходе разливки стали в виде комплексных композиций, включающих помимо щелочноземельных элементов и редкоземельные, позволяет решать перечисленные проблемы и оказывать на металлический расплав более глубокое воздействие [8]. ЕБ результат - не только более глубокое " химическое" воздействие, выражающееся в изменении природы неметаллических включений, но и "физическое", связанное с изменением условий затвердевания слитка (особенно в случае, если в составе модификатора имеются редкоземельные элементы), с инокулирующим действием вводимых в жидкий расплав твБрдых металлических частиц модификатора. Применение такого приБма стало возможным с разработкой метода "МОДИНАР" (модифицирование стали на разливке), заключающегося во введении лигатур легкоокисляющихся элементов (кальция, магния, бария, редкоземельных элементов, алюминия, титана) в струю стали, вытекающую из ковша в центровую в ходе сифонной разливки. При организации работы по методу "МОДИНАР" могут быть использованы аппараты-дозаторы. Разработанные нами устройства для подачи модификаторов (400 - 500х400 - 600х1200 - 1500 мм) просты в изготовлении и эксплуатации. Они навешиваются на ковш перед выпуском металла из печи, устанавливаются на сталевозную тележку или перемещаются вдоль разливочной площадки на монорельсе. Подающая труба, закреплБнная на аппарате, подводится к месту выхода струи металла из ковша, и производится дозированная подача материала. Для обслуживания процесса модифицирования не требуется подвод коммуникаций (электроэнергии или сжатого воздуха) и сама операция не вызывает затруднений у обслуживающего персонала. Для обработки металла использовали дроблБные фракционированные (1–20 мм) материалы или "чипсы" (пластины размером 5–20х5–20 мм и толщиной 2–3 мм), полученные методом закалки жидкого расплава [9]. Расход модифицирующего сплава составлял 0,8–1,2 кг на тонну обрабатываемой стали. Общие результаты испытания метода модифицирования сталей различного назначения в ходе разливки опубликованы в работе [10]. В данной работе мы приводим результаты применения нами метода "МОДИНАР" при обработке трубной стали 20ФА.* Работа по модифицированию стали 20ФА была проведена на ЧТПЗ совместно с институтом ВНИИТНефть. Исходный металл с содержанием серы не более 0,015% выплавляли в 120-т мартеновской печи и внепечной обработке не подвергался. Дополнительного перегрева металла перед его модифицированием не производили. Для обработки стали использовали лигатуры системы Fe-Si- Mg-Ca-РЗМ-Al из расчБта присадки 1 кг на 1т обрабатываемой стали. На части плавок (для сравнения) 2-3 поддона оставляли не модифицированными. Для определения концентрации кальция и редкоземельных элементов (церия и лантана) в готовом металле (трубе) использовали оптический эмиссионный спектрометр Spectrolab-JrCCD. Содержание кальция в готовом прокате находилось в узких пределах (22–28 ppm), содержание редкоземельных элементов (Ce + La) — 42–67 ppm. Методом вакуум-плавления на установке фирмы "Бальцерс" установлено содержание газов в металле труб: водорода — 1,1–1,6 ppm, азота и кислорода - по 40–50 ppm. При анализе металла, отобранного из ковша, изложницы и проката (труб) обращали внимание на содержание вредных примесей серы и фосфора. В готовом металле концентрации этих примесей снижались, соответственно, на 0,004% и 0,002% при исходном содержании в ковше 0,012–0,015% серы и 0,010–0,016% фосфора. На обычном металле, не прошедшем обработку модификаторами, такого явления не наблюдали. По-видимому, оксисульфидные комплексы включений, содержащие к тому же и соединения с фосфором, имели возможность удаляться из металла, кристаллизующегося в изложнице. При прокатке слитков 3,5–4,5 т на трубы диаметром 273, 325 и 426 мм наблюдали снижение расходного коэффициента на 20 - 40 кг на тонну металла. Загрязненность стали неметаллическими включениями оценивали металлографическим методом при 100-кратном увеличении в объеме сдаточного и исследовательского контроля. Кроме того, изучение природы неметаллических фаз вели с применением японского измерительного комплекса, включающего растровый электронный микроскоп и видеокамеру, а также немецкого компьютерного комплекса обработки изображений. В металле, не прошедшем обработку модификатором, включения состояли из остроугольных продуктов раскисления алюминием — корунда и низкоплавких сульфидов, раскатанных вдоль направления прокатки. Эти выделения являются концентраторами напряжений и источниками образования микротрещин, в полость которых диффундирует атомарный водород, растворенный в металле. Поcле молизации и повышения давления водорода трещины расширялись, что вело, по-видимому, к увеличению скорости коррозии металла. В модифицированном металле обнаруживали оксисульфидные неметаллические включения, имеющие вытянутую чечевицеобразную форму и располагающиеся равномерно в объеме металла. При исследовании модифицированного металла на пробах, отрезанных из подприбыльной зоны, было получено повышение ударной вязкости при испытании образцов КСV при температуре минус 500С (в среднем, с 14,5 до 18,0 кгсм/см2) при минимальном разбросе получаемых данных (на обычном металле — 9,1–18,6; на модифицированном — 17,4–18,8 кгсм/см2) (табл. 1).