Термическая обработка. В помощь рабочему-термисту
Райцес В.Б.
Машиностроение, 1980 г.
6. КАК И ПОЧЕМУ ВОЗНИКАЮТ ВНУТРЕННИЕ НАПРЯЖЕНИЯ ПРИ ЗАКАЛКЕ
При закалке возникают внутренние напряжения, которые по величине могут быть настолько большими, что это приводит к трещинам и разрушению стали без всякого дополнительного воздействия. Коробление деталей — это также результат воздействия внутренних напряжений. Различают три рода внутренних напряжений.
Напряжения 1-го рода.
Единственная причина возникновения таких напряжений — неравномерность охлаждения деталей при закалке. Как мы уже видели, поверхностные слои металла охлаждаются быстрее, внутренние — медленнее; тонкие части детали охлаждаются быстрее, массивные — медленнее. Почему же это приводит к внутренним напряжениям? Представим себе кольцо, в которое плотно вставлен стержень (рис. 20). Поместим такой стержень с кольцом в печь и разогреем до закалочной температуры. Теперь выгрузим их из печи и начнем холодным водяным душем поливать кольцо. При понижении температуры объем тела, как известно, уменьшается (тело сжимается). Следовательно, и кольцо при охлаждении должно уменьшиться по объему, а значит и по диаметру. Но стержень препятствует этому, так как температура его почти не изменилась, а значит и диаметр остался прежним. В этих условиях кольцо начинает давить на стержень, сжимая его со всех сторон. Поэтому в стержне и возникают сжимающие напряжения. Кольцо же при этом может даже разорваться. Нечто подобное может произойти при насаживании горячей обечайки на бочку. Таким образом, в кольце возникают растягивающие напряжения.
^Аналогичная картина получается при закалке сплошной детали цилиндрической формы (рис. 21). Наружная поверхность ее в виде кольцевого слоя охлаждается
быстро и уменьшается в объеме. Внутренняя же зона охлаждается замедленно и потому препятствует сжатию наружного кольцевого слоя. В результате внутренняя зона металла окажется сжатой, а наружная — растянутой. В последующий период внутренняя зона, охлаждаясь, уменьшится в объеме и потянет к центру наружный кольцевой слой, стремясь уменьшить его диаметр. Но металл снаружи уже остыл и потому утратил пластичность. Теперь наружная зона играет роль жесткого кольца, которое уже не может уменьшиться по диаметру. Поэтому в заключительный период охлаждения в наружных слоях металла возникнут сжимающие напряжения. Внутренняя же зона металла, будучи связана с наружными слоями, не сможет уменьшиться в объеме, хотя и будет стремиться к этому. В результате в ней возникнут растягивающие внутренние напряжения. Растягивающие напряжения являются более опасными, чем сжимающие. При закалке массивных деталей, когда различие в температуре внутренних и наружных слоев достигает значительной величины, такие напряжения могут вызвать трещины или даже привести к полному разрушению металла, как это, например, бывает при закалке молотовых штампов.
Внутренние напряжения 1-го рода, как теперь уже ясно, вызываются объемными изменениями металла при понижении или повышении температуры, и потому их называют термическими напряжениями.
Напряжения 2-го рода.
Такие напряжения вызываются структурными изменениями при закалке. Как уже указывалось, различные структуры стали имеют различный удельный объем: мартенсит — максимальный, аустенит — минимальный, перлит — средний между ними.
Представим себе цилиндрическую деталь из углеродистой стали, которая прокаливается не насквозь. Тогда после закалки в наружном кольцевом слое такой детали будет мартенситная структура, а в центральной части — перлитная. При образовании мартенсита объем стали возрастает, и поэтому наружное мартенситное кольцо будет стремиться увеличиться в диаметре. Но этому препятствует центральная зона, стремясь стянуть кольцо к центру. В результате в наружном мартенсит-ном слое металла возникнут сжимающие напряжения, а в центральной зоне, наоборот,— растягивающие.
Эти напряжения также связаны с изменениями объема металла, но такие изменения в данном случае вызваны структурными превращениями. Поэтому и напряжения называются структурными.
Таким образом, окончательная картина распределения внутренних напряжений весьма сложная и зависит от соотношения термических и структурных напряжений в данном участке детали.
Напряжения 3-го рода.
Это напряжения, возникающие в атомной решетке. Мы уже знаем, что в атомной решетке по различным причинам могут возникать искажения с нарушением правильного порядка расположения атомов, например дислокации. Дислокацию можно рассматривать как лишнюю плоскость, вклинившуюся между двумя соседними плоскостями и как бы распирающую атомную решетку в этом месте. Атомы, расположенные в прилегающих к дислокации плоскостях, сдвигаются из своего нормального (равновесного) положения в данной решетке. Стремление этих атомов к упорядоченному расположению и вызывает появление внутренних межатомных напряжений. Мартенситная структура, возникающая в стали после закалки, характеризуется большим числом дислокаций. Кроме того, мартенсит имеет атомную решетку, в которой между атомами железа расположены атомы углерода (см. рис. 9). Это приводит к распиранию решетки, к ее искажению, а следовательно, также вызывает внутренние межатомные напряжения.
Подводя итог всему сказанному, следует ответить на вопрос — всегда ли внутренние напряжения являются опасными и нежелательными? Нет, в ряде случаев они являются полезными и способствуют повышению прочности деталей. Такое благоприятное действие оказывают, например, сжимающие напряжения на поверхности деталей. Поясним это. Представим себе динамометр (силоизмеритель), который растягивают два человека в разные стороны с помощью тросов (рис. 22). Предположим, что стрелка динамометра показывает при этом растягивающее усилие, равное 50 кгс. Если теперь еще два человека возьмутся за тросы и будут их тянуть к динамометру, прикладывая усилие 30 кгс, то стрелка на нем покажет 20 кгс. Аналогично действуют внутренние сжимающие напряжения, образующиеся в деталях при закалке. Например, если к стержню приложить растягивающие усилия, которые создадут в нем напряжения 40 кгс/мм2, и если в этом стержне внутренние сжимающие напр.яжения, полученные путем закалки, равны 15 кгс/мм2, то напряжения, растягивающие в действительности стержень, составят 25 кгс/мм2. Таким образом, внутренние напряжения в данном случае как бы разгружают стержень от внешнего напряжения.
Почему же именно у поверхности внутренние сжимающие напряжения оказываются особенно полезными? Во-первых, максимальные напряжения при работе детали возникают почти всегда у поверхности. Во-вторых, наиболее опасными являются растягивающие напряжения, особенно при наличии каких-либо дефектов на поверхности. Это наглядно иллюстрирует следующий пример. Возьмем школьный резиновый ластик для стирания и сделам на нем с двух сторон небольшие поперечные надрезы. Теперь, сдавливая двумя пальцами с торцовых сторон этот ластик, изогнем его по дуге. Легко можно
7. ПРИЧИНЫ ДЕФОРМАЦИИ ДЕТАЛЕЙ ПРИ ЗАКАЛКЕ
В результате закалки может произойти изменение формы и размеров деталей. Кольцо шарикоподшипника, например, может принять форму овала, ось валика может изогнуться по дуге и т. п. Кроме тога, возможно изменение объема детали, в результате чего изменяются точные размеры, приданные ей предшествовавшей механической обработкой.
Под короблением обычно понимают искажение формы изделий, а поводкой называют нарушение размеров, вызванное изменением объема. Такое толкование, конечно, несколько условно, поскольку любое изменение формы неизбежно сопровождается изменением размеров.
Рассмотрим, какие причины вызывают коробление. Оно может возникнуть при нагреве изделий. Это происходит в том случае, если они при укладке в печи прогибаются под действием собственной массы или массы других деталей, а также при неравномерном нагреве в печи, когда одна сторона детали нагревается быстрее другой. Например, если со стороны загрузочного окна печи происходит подстуживание, то поверхность детали, обращенная к окну, будет иметь более низкую температуру, и в результате произойдет выгиб ее, коробление. Из этого можно заключить, что в условиях правильного нагрева коробление можно свести к минимуму.
При закалке, когда происходят резкое охлаждение и структурные превращения в стали, избежать коробления и поводки практически невозможно. Однако можно свести их к минимальным значениям. Посмотрим, как это сделать. Главная причина коробления — неравномерность охлаждения деталей при закалке. Это вызывает неравномерность объемных изменений, что, в свою очередь, приводит к внутренним напряжениям, а они-то уже и вызывают коробление. Так происходит, например, при закалке стержня, показанного на рис. 23. Как бы быстро ни опускали его в закалочную жидкость, вначале
погрузится нижняя сторона, а затем верхняя. В момент, когда нижняя часть стержня окажется в охладителе, а верхняя будет еще над его поверхностью, произойдет объемное сжатие нижней части, и стержень изогнется, как показано на рисунке. В последующий момент, когда в охладитель погрузится и верхняя часть, она также будет стремиться уменьшиться в объеме — сжаться и выгнуть стержень в другую сторону. Однако выпрямления его уже не произойдет, так как металл в этот момент уже остыл и потому утратил прежнюю пластичность. Очевидно, коробление можно уменьшить, если погружать такой стержень в закалочную жидкость в вертикальном положении. 0
Изменение размеров деталей, вызванное структурными превращениями, по своей величине сравнительно небольшое. Оно зависит от содержания углерода в стали. Повышение содержания углерода на 0,1% вызывает увеличение объема при сквозной закалке на мартенсит всего на 0,1%. Значит, при закалке стали У10, содержащей 1% С, объем увеличится на 1%. Тем не менее при изготовлении точных изделий (калибров, мерных плиток) и такое малое изменение размеров недопустимо. В этих случаях иногда применяют бездеформационную закалку. Такое название, конечно, условное, поскольку полностью избежать деформации практически невозможно. Можно лишь свести ее к желаемому минимуму.
Рис. 23. Изгиб стержня при закалке
Сущность бездеформационной закалки заключается в следующем. Деталь подвергается полной механической обработке на точные размеры до закалки, когда сталь
Рис. 24. Изменение формы под действием термических напряжений
имеет перлитную структуру. При нагреве под закалку перлит превратится в аустенит. Если бы после закалки удалось полностью сохранить аустенитную структуру, то объем детали стал бы меньше исходного, который был при перлитной структуре. Если же при закалке аустенит полностью превратится в мартенсит, то объем станет больше исходного. Очевидно, если закалку произвести так, чтобы получить количество мартенсита и остаточного аустенита в определенном соотношении, то объем детали, а значит и ее размеры, не будут изменяться. Правда, получить требуемое количество остаточного аустенита в углеродистой стали трудно. Так, например, в стали У13 его должно быть 60%, а в стали У8 — 35%, что вообще недостижимо. Зато в легированных сталях, например марки ХГ, это вполне осуществимо. Регулирование количества остаточного аустенита достигается изменением температуры закалки и скорости охлаждения.
Несмотря на то, что при закалке на мартенсит объем увеличивается, это не означает, что все размеры детали возрастают. Так, при закалке цилиндра большой высоты диаметр, особенно в средней части, уменьшается, а высота увеличивается; при закалке цилиндров, у которых высота меньше диаметра,— наоборот, уменьшается высота, но увеличивается диаметр; полосы и листы увеличиваются по ширине, а по длине иногда уменьшаются; кольца увеличиваются по ширине и толщине, а по Диаметру — уменьшаются.
Термические напряжения стремятся так изменить Форму изделия, чтобы она приближалась к форме шара.
Например, в детали в виде куба в результате термических напряжений грани становятся выпуклыми (рис. 24,а), цилиндр сокращается по длине и увеличивается по диаметру (рис. 24,6). В результате общая картина деформаций настолько усложняется, что заранее предвидеть все возможные изменения размеров детали после закалки во многих случаях не представляется возможным, и вопрос решается опытным путем.