Технологические взрывы в металлургическом производстве

Взрывы, возникающие в ходе технологического процесса производства металлов и сплавов, называются техноло­гическими. К ним относятся взрывы при контакте рас­плавленного металла и шлака с водой, взрывы газо- и пыле-воздушных смесей, а также порошков металлов и сплавов. Высокая вероятность возникновения взрыва су­ществует во всех основных металлургических цехах. Так, в доменном производстве взрывы возникают при кон­такте расплавленных металла и шлака с водой, при о воде доменного газа и подаче в доменную печь природ­ного газа (взрывы газо-воздушных смесей). При приме­нении в ряде случаев угольной пыли и вдувании ее в доменную печь возможны взрывы пылевоздушных сме­сей и т. п.

В сталеплавильном производстве возможны взрывы газов, порошков металлов и сплавов-раскислителей, экзо­термических смесей, утепляющих засыпок; в прокатном производстве — взрывы паров смазочных материалов, газо-воздушных смесей и др. Взрывы паров смазочных материалов, строго говоря, нельзя отнести к категории технологических, однако они влияют на ход технологиче­ского процесса.

Технологический взрыв отличается рядом характер­ных особенностей от других видов взрывов, даже если последние вызывают аварийную остановку оборудова­ния или технологического процесса. При возникновении технологического взрыва в нем непосредственно участву­ют компоненты технологического процесса, обусловли­вающие обычно нормальное протекание процесса и ра­боту оборудования. Технологический взрыв приводит к резкому изменению параметров процесса, неустойчивой работе оборудования, что вызывает необходимость  его остановки. Экономические потери вследствие технологи­ческого взрыва в связи с потерями производства во мно­го раз выше затрат на восстановление оборудования и ликвидацию последствий разрушения.

Технологические взрывы органически связаны с тех­нологией производства и работой оборудования, поэто­му их следует рассматривать как экстремальные откло­нения параметров безопасности производственного процесса.

 

1. Взрывы при контакте расплавленных металла и шлака с водой

1.1 Механизм и кинетика взрыва

При контакте расплавленных металла и шлака .с водой происходит взрыв, что объясняется физико-химическими свойствами воды, изучение которых позволяет раскрыть сущность механизма и кинетику такого рода взрыва. Со­прикосновение воды с расплавленным металлом и шла­ком приводит к мгновенному испарению ее, сопровож­дающемуся резким увеличением объема и давления.

При атмосферном давлении вода закипает при 100° С и весь процесс парообразования идет при температуре кипения. При нагревании воды выше 100° С в замкнутом пространстве интенсивность испарения несколько сни­жается, что объясняется свойством воды при высоких температурах изменять режим кипения. Так, в интерва­ле 100—300° С режим кипения имеет пузырьковый харак­тер, т. е. на поверхности идут образование мелких пузырьков пара, их отрыв, поднятие на поверхность и пе­реход в газовую фазу. При более высокой температуре режим кипения усиливается и переходит в пленочный; при этом паровые пузыри сливаются в сплошную паро­вую прослойку между поверхностью нагрева и водой, что препятствует передаче тепла другим слоям воды.

Температура кипения воды зависит от давления над ее поверхностью: с ростом давления температура кипе­ния повышается. Так, при давлении 490 кПа вода начина­ет закипать при температуре 151,1° С. Если внезапно давление над поверхностью воды снизится до атмосферно­го, вода окажется перегретой на 51°С и мгновенно пре­вратится в пар, объем которого примерно  в   1600 раз больше объема воды. Такое превращение носит взрывообразный характер.

Энергия взрыва при контакте расплавленного метал­ла или шлака во много раз превышает энергию рабоче­го пара при расширении даже при коэффициенте полез­ного действия, равном 100%. Это объясняется физико-химическими свойствами воды. Соотношение масс водорода и кислорода в воде составляет 11,19 и 88,81%, т. е. содержание кислорода в воде больше, чем в любом другом соединении. При нормальных условиях (атмо­сферном давлении и температуре 20° С) диссоциация во­ды не протекает. При повышении температуры до 1500° С скорость разложения воды возрастает, однако до 2000° С интенсивность разложения незначительна, так как вода является химически стойким соединением. Лишь при достижении 4000° С вода разлагается на газо­образные водород и кислород, что сопровождается взры­вом. В этом случае содержание водорода значительно больше, чем при диссоциации воды, в связи с тем, что взаимодействие водяного пара с железом, нагретым до высоких температур, приводит к выделению свободного водорода: Fe+H2O=FeO+H2.

Эта реакция протекает достаточно энергично уже при температуре нагрева железа 350° С, а при более высокой температуре — практически мгновенно. В производствен­ных условиях при контакте расплавленных металла и шлака с водой одновременно протекают процессы испа­рения, диссоциации воды и ее взаимодействия с желе­зом, сопровождающиеся выделением водорода, который при определенных условиях образует с кислородом взрывчатую смесь. Воспламенение этой смеси приводит ко взрыву, энергия которого изменяется в широких пре­делах и зависит от многих факторов. При этом взрыв происходит только при взаимодействии жидких фаз — расплавленных металла, шлака и воды. Контакт воды с металлом или шлаком в твердом состоянии при темпе­ратуре, близкой к температуре солидуса, взрыва не вы­зывает.

При взаимодействии расплавленных металла и шлака с водой контакт может быть поверхностным и внутрен­ним. В первом случае возможны два варианта: взаимо­действие незначительных масс расплава и воды либо больших масс. В первом случае при контакте наблюда­ется интенсивное кипение и свободное удаление   пара, а также образовавшихся в результате диссоциации воды и реакции окисления железа водорода и кислорода в окружающую среду. Такой контакт металла с водой взрыва не вызывает.

Во втором случае, когда взаимодействуют большие массы металла и воды, у поверхности контакта образу­ется парогазовая прослойка, содержащая пары воды, во­дород и кислород, выделяю­щиеся вследствие диссоциации воды и окисления железа. Контактирующая с водой часть расплава в твердой фазе в результате действия охлаж­дения при испарении воды и возникновении напряжений может растрескиваться, что приводит к контакту расплав­ленного металла с водой. Это явление усугубляется при на­личии на поверхности металла расплавленного шлака, кон­такт которых с взрывоопас­ной газовой смесью повышает вероятность взрыва. Критическими параметрами в этом случае являются масса металла или шлака, масса воды и продолжительность контакта металла с во­дой.

Потери тепла металлом складываются из тепла, вы­деляющегося при охлаждении металла от начальной температуры до температуры плавления, и тепла, выде­ляющегося при затвердевании металла. Так как масса жидкого металла незначительна, процесс образования твердой фазы в пограничном слое необратим.

В данном случае массы металла и воды находятся в соотношении, обеспечивающем взаимодействие между ними без возникновения взрыва.

Внутренний контакт расплава с водой возможен в двух случаях: при поступлении жидких металла или шлака в воду и при поступлении материалов, содержа­щих воду, в расплав. Отметим, что капельное тонко-струйное поступление жидкого металла в воду взрыва не вызывает. Увеличение массы жидкого металла, по­ступающего в воду, приводит к взрыву. При контакте с водой жидкого шлака взрывоопасность значительно ни­же. Вероятность взрыва при поступлении жидкого шла­ка в воду резко возрастает при наличии в шлаке жидко­го металла. Контакт жидкого металла и шлака с водой, вызванный попаданием в расплав пористых материалов, пропитанных влагой, как правило, приводит ко взрыву.

1.2. Виды взрывов и их предотвращение

В металлургических цехах возможны случаи, когда жидкий металл или шлак попадают на влажные пол, почву, материалы или конструкции. Такие явления обычно со­провождаются взрывами с выбросом жидкого металла или шлака. Взрывы происходят также и при выпуске ме­талла по непросушенным желобам или при сливе в ковш с плохо просушенной футеровкой. Причины этих взрывов — образование пара вследствие контакта жид­ких раскаленных масс с водой и взрывоопасных смесей.

Если расплавленный металл касается влажного пес­ка, между ним и поверхностью песка образуется паровая прослойка, через которую в дальнейшем и будет проис­ходить переход тепла от металла к влажному песку.

Пар имеет очень низкую теплопроводность. При таких условиях потери тепла металлом во влажный песок бу­дут относительно небольшими и на поверхности метал­ла, прилегающей к песку, корка будет образовываться очень медленно. Давление пара в прослойке из-за отсут­ствия свободного выхода для него все время повышается.

В любой точке, лежащей в центре паровой прослойки между металлом и влажным песком, образовавшийся пар не может уйти вниз через влажный песок и через кон­тактную поверхность между металлом и песком. Минимальное сопротивление для выхода пара наружу будет оказывать жидкий металл. При толщине металла 30 см гидростатическое давление жидкого чугуна на песок

Ρ = 0,098*hΜ*γ  =  0,098*30*7 = 2,0594 кПа,

где hΜ — высота слоя металла, см; γ — плотность чугу­на, г/см2.

Давление же пара в прослойке легко может достиг­нуть 4900 кПа и более. В конечном счете давление пара прослойки достигает такой величины, что он пробьет сла­бую, еще не окрепшую металлическую корку и в виде от­дельных пузырьков проникнет в толщу жидкого металла. В металле пар нагревается, переходит из влажного в су­хой и взаимодействует с окружающей металлической оболочкой. На нагрев пара в пузырьках и на химическое взаимодействие его с оболочкой затрачивается много тепла, что приводит к затвердеванию окружающей ме­таллической оболочки. Размеры пузырьков при этом ста­новятся фиксированными.

Нагревание пара и водорода в изолированном пу­зырьке будет продолжаться до тех пор, пока давление их не достигнет предела прочности затвердевшей окружаю­щей металлической оболочки. Как только оно достигнет этого значения, оболочка разорвется на части и газы бу­дут с большой силой выброшены наружу, т. е. произойдет взрыв. Сила взрыва зависит от вязкости металла и тол­щины его слоя: чем больше вязкость, т. е. чем больше металл охладится и чем толщина его слоя больше, тем взрыв сильнее. В результате разрыва металлической оболочки пузырьки пара и водорода выбрасываются в окружающую атмосферу, водород смешивается с возду­хом и образует смесь взрывоопасной концентрации, ко­торая в зависимости от условий либо сгорает голубова­тым пламенем, либо взрывается.

2. Взрывы в доменных цехах.

 Распространенными вида­ми взрывов в доменных цехах являются взрывы вслед­ствие соприкосновения жидкого чугуна, шлака с водой или влажными материалами. Взрыв такого вида возни­кает главным образом при прогарах стенок горна или ле­щади, в зонах леток. Особенно опасны взрывы в фурмах, шлаковых фурмочках и шлаковых ковшах. Взрывы в фурмах весьма опасны, потому что при этом открывает­ся горн и через фурменное отверстие выбрасываются на рабочую площадку раскаленные кокс и газы, которые в атмосфере воспламеняются и горят, образуя длинные языки пламени. Взрывы в фурмах происходят главным образом из-за повышения давления пара, образовавше­гося внутри полости фурмы, и возникновения взрыво­опасных газо-воздушных смесей в канале фурмы.

Взрывы, вызываемые повышением давления пара, происходят вследствие внезапного прекращения поступ­ления воды в полость фурмы. Такие условия создаются, если водоподводящая и водоотводящая трубки фурмы или обе одновременно почему-либо забиваются и не про­пускают воду. Тогда оставшаяся в полости фурмы вода испаряется, давление пара, не имеющего выхода, превы­шает предел прочности фурмы, и она разрушается. При таких взрывах отбрасывается часть фурменного прибора, состоящая из фурменного колена, сопла и самой фурмы.

Образование взрывоопасных газо-воздушных смесей происходит в канале фурмы при остановках доменных печей или при осадках шихтовых материалов, когда дав­ление газов и дутья выравнивается; иногда давление га­зов в горне становится даже выше, чем давление горя­чего дутья в фурменных приборах. В такие периоды га­зы из горна проникают в фурменные рукава и здесь встречаются с воздухом дутья, который так же, как и газы, нагрет до высокой температуры; встреча их при­водит к воспламенению и горению, которое иногда про­исходит со взрывом.

Особенно опасна встреча газов с воздухом дутья в присутствии воды (вследствие течи фурм). Температура газов и дутья в фурменном приборе может оказаться ни­же температуры их воспламенения вследствие потери тепла на испарение воды. В результате образуются взры­воопасные газо-воздушные смеси.

В арматуре шлаковой летки фур мочка является от­верстием для выпуска шлака из горна доменной печи. Отливаются фурмочки из бронзы и обрабатываются на токарных станках. Через отверстие шлаковой фурмочки выпускается только шлак. Если по каким-либо причинам вместе со шлаком из летки начинает выходить чугун, то немедленно произойдет прогар фурмочки, и охлаждаю­щая вода начнет поступать в шлаковый канал. Обычно это заканчивается соприкосновением воды с жидким чу­гуном или шлаком и взрывом с выбросом фурмочки. Взрывы в шлаковых ковшах происходят сравнительно редко. Они возникают вследствие скопления воды на дне чаши. Вода на дне чаши может оказаться также под слоем остывшего, неслитого остатка шлака.

3.Взрывы в мартеновских цехах.

Взрывы, вызываемые водой или влажными материалами, загружаемыми в мартеновские печи, являются наиболее частыми. Вода попадает в печи вместе с шихтовыми материалами в ви­де отдельных кусков льда, снега, обледенелых руд и ме­таллического лома и т. д.

Взрывы, вызываемые попавшей в печь водой, быва­ют двух видов: глухой — с выбросом через завалочные окна части полурасплавленных шихтовых материалов и длинных языков горящих газов и звонкий, при котором, кроме того, взрывной волной повреждается кладка пе­чи— свод, стенки или головки. Глухие взрывы происхо­дят в период прогрева и плавления шихтовых материа­лов твердой завалки, а звонкие — во время загрузки в печь добавочных материалов — руды, известняка, лома или холодного чугуна, когда уже все шихтовые материа­лы расплавлены и в печи находится жидкий металл, по­крытый шлаком.

Первый вид взрыва вызывается испарением воды, скопившейся под шихтовыми материалами. Вследствие прогрева сверху заваленных на подину материалов на­ходящаяся в них влага постепенно начинает стекать вниз, собираясь в тех местах, где шихта плохо прогрета. Испарение этой влаги происходит, когда сильно прогре­вается вся масса шихтовых материалов. Образующийся пар в местах скопления воды не имеет свободного выхо­да, вследствие чего давление его повышается и достигает такой величины, что он поднимает лежащий над ним слой шихты и с силой прорывается в рабочее пространство печи. Сила взрыва зависит от количества воды, проник­шей в печь вместе с шихтовыми материалами, толщины и плотности слоя материалов, лежащих на подине печи.

Второй вид взрывов, вызываемых водой, объясняет­ся сложными физико-химическими процессами, протека­ющими в мартеновской печи над ванной. В печи во вре­мя нормального процесса плавки находится расплавлен­ный металл, покрытый сверху слоем шлака. Загрузка в такую ванну добавочных шихтовых материалов не всег­да приводит к их глубокому погружению в ванну; мно­гие из них погружаются в шлак и находятся на поверх­ности металла.

Причины взрывов, происходящих в печах при по­падании воды па раскаленный шлак или при завалке влажных шихтовых материалов, изучены недостаточно.

Вода, попавшая на поверхность шлака в печи, нагрева­ется и переходит в пар; одновременно происходят про­цессы химического взаимодействия образующего пара со шлаком по реакции: 2FeO + H2O = Fe2O3 + H2

Водород и водяной пар поднимаются с поверхности шлака, смешиваются с газовой атмосферой печи; в ре­зультате этого взрываемость окиси углерода в газовой атмосфере печи сильно повышается. Так как газы в пе­чи нагреты до температуры, превышающей точку их са­мовоспламенения, и имеют избыток кислорода, то проис­ходит взрыв смеси.

Бринза В.Н., Зеньковский М.М.  «Охрана труда в черной металлургии», М. «Металлургия» 1982 г.