Специальные материалы в машиностроении

Солнцев Ю.П., Пряхин Е.И., Пирайнен В.Ю. Специальные материалы в машиностроении

Солнцев Ю.П., Пряхин Е.И., Пирайнен В.Ю.

Химиздат, 2004 г.

АМОРФНЫЕ И НАНОКРИСТАЛЛИЧЕСКИЕ СПЛАВЫ

 

Аморфные и нанокристаллические металлические материалы нашли широкое применение в системе магнитных материалов. Нанокристаллические материалы появились позже аморфных, в начале 1990-х г. Объединение их в одном разделе и совместное рассмотрение целесообразно, так как нанокристаллическая структура во многих случаях формируется на основе трансформации аморфного состояния.

 

УСЛОВИЯ ОБРАЗОВАНИЯ АМОРФНОЙ СТРУКТУРЫ

Аморфные металлические сплавы (АМС) получают быстрой закалкой расплавов при скоростях охлаждения жидкого металла 104— 106 °С/с и при условии, что сплав содержит достаточное количество элементов-аморфизаторов. Аморфизаторами являются неметаллы: бор, фосфор, кремний, углерод и металлы. Соответственно аморфные металлические сплавы разделяются на сплавы "металл - неметалл" и "металл - металл".

Широкое промышленное применение имеют магнитомягкие сплавы системы "металл - неметалл". Их получают на основе ферромагнитных металлов - железа, никеля, кобальта, используя в качестве аморфизаторов различные сочетания неметаллов.

Структура аморфных сплавов подобна структуре замороженной жидкости. Затвердевание происходит настолько быстро, что атомы вещества оказываются замороженными в тех положениях, которые они занимали, будучи в жидком состоянии. Аморфная структура характеризуется отсутствием дальнего порядка в расположении атомов, благодаря чему в ней нет кристаллической анизотропии, отсутствуют границы блоков, зерен и другие дефекты структуры, типичные для поликристаллических сплавов.

Следствием такой аморфной структуры являются необычные магнитные, механические, электрические свойства и коррозионная стойкость аморфных металлических сплавов. Уровень электромагнитных потерь в аморфных сплавах с высокой магнитной индукцией оказывается существенно ниже, чем во всех известных кристаллических сплавах, эти материалы проявляют исключительно высокие механическую твердость и прочность при растяжении, в ряде случаев имеют близкий к нулю коэффициент теплового расширения, а удельное электросопротивление их в три-четыре раза выше его значения для железа и его сплавов. Некоторые из аморфных сплавов характеризуются высокой коррозионной стойкостью.

Затвердевание с образованием аморфной структуры принципиально возможно для всех металлов и сплавов. Для практического применения обычно используют сплавы переходных металлов (Fe, Со, Mn, Cr, Ni и др.), в которые для образования аморфной структуры добавляют аморфо-образующие элементы (В, С, Si, Ρ, S). Такие аморфнее сплавы обычно содержат около 80 % (ат.) одного или нескольких переходных металлов и 20 % металлоидов, добавляемых для образования и стабилизации аморфной структуры. Аморфизаторы понижают температуру плавления и обеспечивают достаточно быстрое охлаждение расплава ниже его температуры стеклования так, чтобы в результате образовалась аморфная фаза. На термическую стабильность аморфных сплавов оказывают наибольшее влияние кремний и бор, наибольшей прочностью обладают сплавы с бором и углеродом, а коррозионная стойкость зависит от концентрации хрома и фосфора.

Аморфные сплавы находятся в термодинамически неравновесном состоянии. В силу своей аморфной природы металлические стекла имеют свойства, присущие неметаллическим стеклам: при нагреве в них проходят структурная релаксация, "расстекловывание" и кристаллизация. Поэтому дня стабильной работы изделий из аморфных сплавов необходимо, чтобы их температура не превышала некоторой заданной для каждого сплава рабочей температуры.

 

МЕТОДЫ ПОЛУЧЕНИЯ АМОРФНЫХ МЕТАЛЛОВ

 

Сверхвысокие скорости охлаждения жидкого металла для получения аморфной структуры можно реализовать различными способами. Общим в них является необходимость обеспечения скорости охлаждения не ниже 106 К/с. Известны методы катапультирования капли на холодную пластину, распыления струи газом или жидкостью, центрифугирования капли или струи, расплавления тонкой пленки поверхности металла лазером с быстрым отводом тепла массой основного металла, сверхбыстрого охлаждения из газовой среды и др. Использование этих методов позволяет получать ленту различной ширины и толщины, проволоку и порошки.

 

Получение ленты. Наиболее эффективными способами промышленного производства аморфной ленты являются охлаждение струи жидкого металла на внешней (закалка на диске) или внутренней (центробежная закалка) поверхностях вращающихся барабанов или прокатка расплава между холодными валками, изготовленными из материалов с высокой теплопроводностью.

На рис. 13.33 приведены принципиальные схемы этих методов. Расплав, полученный в индукционной печи, выдавливается нейтральным газом из сопла и затвердевает при соприкосновении с поверхностью вращающегося охлаждаемого тела (холодильника). Различие состоит том, что в методах центробежной закалки и закалки на диске расплав охлаждается только с одной стороны. Основной проблемой является получение достаточной степени чистоты внешней поверхности, которая не соприкасается с холодильником. Метод прокатки расплава позволяет получить хорошее качество обеих поверхностей ленты, что особенно важно для аморфных лент, используемых для головок магнитной записи. Для каждого метода имеются свои ограничения по размерам лент, поскольку есть различия и в протекании процесса затвердевания, и в аппаратурном оформлении методов.